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Time- and frequency-gated spontaneous emission signals are calculated for electron-transfer systems. The
electron-transfer dynamics is modeled in terms of two diabatic excited electronic states which are electronically
coupled as well as strongly coupled to a reaction mode, which in turn is weakly coupled to a dissipative
environment. The bath degrees of freedom are integrated out in the framework of Redfield theory. The reduced
density matrix is obtained by the numerical solution of the Redfield equations of motion. For suitably chosen
parameters, the model describes interesting features of ultrafast electron-transfer dynamics such as electronic
beatings (due to the electronic coherence) and steplike electronic population decay (due to vibrational
coherence). The relationship between the intrinsic system dynamics and the time-resolved fluorescence (from
the electronically coupled excited states to the ground state) is investigated. The time- and frequency-gated
fluorescence spectra are obtained for various durations of the pump and gate pulses. For suitably chosen
parameters of the pump and gate pulses, the signal maps the vibrational wave packet dynamics of the electron-
transfer system. The frequency-integrated time-resolved fluorescence, on the other hand, reflects directly the
population dynamics of the diabatic electronic states. It is shown that the step structures in the electronic
population probability due to vibrationally coherent electron transfer or the oscillatory structures due to
electronic coherence can be experimentally detected, provided the duration of the pump and gate pulses is of
the order of a vibrational period or electronic beating period, or shorter. When the duration of the pulses
significantly exceeds the vibrational or electronic beating periods, the system-specific features are averaged
out, resulting in exponential electronic population decay corresponding to the electron-transfer rate.

1. Introduction

With the availability of femtosecond pulses,1,2 various time-
resolved spectroscopic techniques enable one to observe the
evolution of spectra in “real time”, and thus to monitor
microscopic nuclear motion and the most elementary processes
of chemical dynamics which take place on ultrafast time
scales.3-7 Among these techniques, the time- and frequency-
gated (TFG) spontaneous emission (SE) spectroscopy has an
important advantage over, e.g., diverse pump-probe techniques.
Indeed, if the excitation and gate pulses do not overlap, the SE
consists solely of the fluorescence component, which directly
monitors the ultrafast excited-state dynamics. The technical
realization of TFG SE spectroscopy is the fluorescence up-
conversion technique,8-12 in which the SE and a short up-
conversion (or time gate) pulse are mixed in a nonlinear crystal,
and the integrated intensity of the sum frequency is monitored.
The time resolution is achieved because the gate pulse creates
a “time window” for SE, and the frequency resolution is
achieved by dispersing the up-converted signal in a monochro-
mator or “frequency filter”. The TFG SE (which is also often
called “time-resolved fluorescence spectroscopy”) has become
an effective tool for the monitoring of the excited-state dynamics
of various systems ranging from isolated diatomic molecules

to rather complex systems (carotenoids, chromophore-solvent
systems, or porphyrins).4,13-18

When ultrafast TFG SE experiments are interpreted, a
fundamental question arises: how can one extract quantitative
information on the system dynamics from the measured signals?
There is a certain gap between theoretical and experimental
results. Theorists prefer to calculate quantities such as the time-
dependent electronic population probability or various correla-
tion functions, while experimentalists measure certain time-
dependent transients. Indeed, it is generally assumed that the
measured TFG SE signal maps the excited-state population
dynamics. But the question is, which population (diabatic or
adiabatic) and to which extent? Clearly, the experimental
transients are indirectly connected with the electronic population
dynamics and are strongly influenced by the detection process.
Thus, for systems with complicated and ultrafast dynamics, it
is necessary to introduce explicitly the description of the TFG
procedure into the theory and to establish rigorously the
connection of the experimentally measured signals with the
underlying microscopic dynamics. In the present article, we
study this issue for the case of ultrafast electron-transfer (ET)
systems which, due to a strong nonadiabatic coupling, exhibit
ultrafast decay dynamics.19

One of the most fundamental questions, which is addressed
when discussing ultrafast ET reactions, is the manifestation of
various coherences in the population dynamics and measured
responses. It has been shown theoretically that coherent effects
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in ultrafast ET can be either of vibrational or of electronic
nature.20-30 Therefore, it is necessary to distinguish between
these two types of coherences when interpreting particular
experiments. Excitation of vibrational modes by a short pump
pulse with a broad bandwidth results in a coherent superposition
of vibrational levels, i.e., in the creation of a vibrational wave
packet (WP) in the excited electronic state. Vibrational coher-
ence (VC) effects in ultrafast ET have been studied theoretically
with time-dependent wave packet and reduced density matrix
(RDM) techniques (see, e.g., refs 20-26). These calculations
have shown that the WP motion in the excited state manifests
itself in the time-dependent population dynamics through
characteristic steplike structures. Another conclusion of the
theoretical analysis26-30 is that, under certain circumstances,
another type of coherence, i.e., electronic coherence (EC), also
plays an important role in ultrafast ET. Sufficiently large values
of the electronic coupling may result in a coherent electronic
motion (“coherent ET” or “back-ET”) between donor and
acceptor states. The effect of EC, if it is present in the system,
can be observed as large-amplitude quantum beatings in the
population dynamics,26-30 which are analogous to the well-
known Rabi oscillations in optical physics.31 Naturally, both
EC and VC contribute to the population evolution in the excited
state for systems with sufficiently strong electronic coupling
and nonstationary preparation. This leads to a complex dynamics
with peculiar features, ranging from steplike structures (due to
VC) to electronic quantum beats (due to EC). Recent ultrafast
spectroscopic measurements have confirmed the persistence of
pronounced coherent effects on a picosecond time scale in the
ultrafast ET dynamics for various molecular systems, from
diatomics to proteins.3-5,32-35 However, when trying to interpret
particular experiments, it is not entirely clear if the measured
oscillatory patterns are to be attributed to vibrational or
electronic coherences. So, it is of considerable importance to
clarify (i) which types of coherences are responsible for the
excited-state dynamics and can, therefore, be observed through
TFG SE responses for real systems and (ii) how to separate the
two types of coherences.

A number of papers has appeared in recent years, in which
the problem of ultrafast ET has been treated at different levels
of sophistication. Of particular relevance to the present con-
sideration are the contributions presented in refs 24, 25, and
36-44. The present work is a generalization of an earlier paper
by Jean,36 extending the theory beyond bare time- and frequency-
resolved spectra. It shares the general methodology with recent
papers by Matro and Cina38 and Mukamel and collaborators43,44

(preparation by a pump pulse of finite duration, explicit
consideration of the TFG procedure, reduced density-matrix
description of the nonadiabatic excited-state dynamics within
the Redfield theory, the doorway-window formalism). A novel
feature of the present work is the consideration of several
carefully selected ET model systems exhibiting EC and/or VC
and the systematic exploration of the effects of the preparation
and SE detection by pulses of finite duration. In particular, we
want to answer the following fundamental questions: (i) To
which extent is the intrinsic system dynamics reflected by TFG
SE spectra? (ii) What are the requirements on the system
preparation and detection procedure in order to observe elec-
tronic, vibrational, or combined coherences in TFG SE experi-
ments?

The paper is organized as follows. A brief summary of TFG
SE theory and explicit expressions for the signals are presented
in section 2. The ET model is introduced in section 3. In that
section we also give the equations (Redfield theory) used for

the calculation of the system dynamics. Section 4 contains the
results of calculations of TFG spectra for this ET model. The
effects of temporal resolution and pump-pulse duration are
studied. The manifestation of various coherences in the signal
is also discussed. Concluding remarks are contained in sec-
tion 5.

For notational convenience, we use units in whichp ) 1.

2. TFG SE Spectra

The total intensity of the temporally gated and spectrally
filtered field at the positionrb in the far-field region is given by
the general expression47-49

HereEt(t;t0) is the time-gate function which is strongly peaked
near the gating timet ∼ t0, the functionF(t-t′,ω0) is responsible
for the spectral filtering near the central frequencyω0, and
〈E(rb,t′) E(rb,t′′)* 〉 is the correlation function of the emitted field.

For performing explicit calculations, we shall further use the
standard approximations47-50

for the time gate and

for the frequency filter (which is a good approximation for the
Fabry-Perot filter47). The constantsΓ and γ determine the
widths of the corresponding filters (Γ ) ∞ andγ ) 0 correspond
to an ideal time and frequency resolution, respectively).ϑ(t) is
the Heaviside step function which ensures causality.

For our purposes it is sufficient to consider a system with a
single optical transition between the ground (g) and excited (e)
electronic states. We write the total Hamiltonian as

whereHg is the vibrational Hamiltonian of the electronic ground
state andHe describes the excited-state dynamics (e.g., the
dynamics of two coupled electronic states).

The standard and universal description of various nonlinear
spectroscopic techniques is formulated in terms of the optical
response functions.45 For multidimensional and/or nonadiabatic
systems, a straightforward computation of these functions is not
feasible. For this reason, it is conventional practice to adopt a
system-bath approach, in which a few optically active vibrational
modes, which are directly coupled to the electronic transition,
constitute the relevant system, while the rest of the inter- and
intramolecular modes is treated as a heat bath. Thus, the total
Hamiltonian is expressed as a sum of system (S), bath (B), and
a system-bath interaction (SB) contributions

By integrating out the bath degrees of freedom (see section
3), one arrives at the dissipative kinetic equation for the RDM
in the excited electronic state

Sst(t0,ω0) ∼ ∫-∞

∞
dt ∫-∞

∞
dt′∫-∞

∞
dt′′ Et(t′;t0) Et* (t′′;t0) ×

Fs(t-t′,ω0) Fs*( t-t′′,ω0) 〈E( rb,t′) E( rb,t′′)* 〉 (1)

Et(t;t0) ) Γ1/2 exp(-Γ|t - t0|) (2)

Fs(t,ω0) ) ϑ(t)
γ
2

exp{-(γ + iω0)t} (3)

H ) (Hg 0
0 He

) (4)

Hg ) Hg
S + Hg

B + Hg
SB (5)

He ) He
S + He

B + He
SB
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where, in a general form,L is the Liouvillian. In principle, eq
6 describes the dynamics of the total system (ground+ excited
electronic states). For our purposes it is sufficient, however, to
consider only the excited-state density matrixσ(t), because other
terms (ground-state electronic population and optical coherences)
do not contribute to the fluorescence signal. The RDMσ(t) of
the excited electronic state is the primary quantity describing
the ET dynamics and the fluorescence signal.

If the pump and gate pulses do not overlap, the calculations
simplify considerably, because we can employ a convenient
doorway-window representation of TFG SE spectrum:45,49

Here

is the doorway (D) operator and

is the window (W) operator,Veg andVge are the transition dipole
operators (system-field interaction is given byHSF(t) ) εb‚
µb E(t) V(t)),

is the envelope of the excitation pulse with carrier frequency
ωL,

are the equilibrium vibrational distributions in the ground (i)
g) and excited (i) e) states, andZi are the corresponding
partition functions. In the derivation of eqs 8 and 9, we have
made the standard assumption that the excitation and gate pulses
are short on the time scale of the system-bath relaxation.45,46In
this case, no bath-induced excited-state population relaxation
occurs during the pump and probe processes, and one can
substitute the corresponding total Hamiltonians by their system
parts in the D and W operators.

The DW representation is seen to provide a very simple and
intuitive picture of the TFG SE measurement. We can think of
the fluorescence emission as a stepwise process, which proceeds
via optical creation of population in the excited state by the
pump pulse (which is defined by theD operator), its subsequent
evolution (which is described by the excited-state propagator
e-iLt0), and fluorescence emission (theWoperator describes the
TFG detection).

To evaluate theD andW functions (8, 9), we introduce the
system eigenstates

(hereafter, the eigenvalues and eigenfunctions ofHg
S andHe

S

are denoted by Latin and Greek letters, respectively). The
corresponding frequencies read

If we additionally assume that the time-gate function and the
pump pulse are of exponential form and described by equations
such as (2) and (10), all the time integrations in (8) and (9) can
be performed analytically

where

HereVRn andVnâ are the matrix elements of the transition dipole
moments between the eigenstates|R〉 and|â〉 (belonging to the
excited electronic state) and|n〉 (belonging to the ground
electronic state). These are the final expressions for the TFG
SE spectrum which are used in all subsequent calculations.

3. ET Model

The standard model of an ET system consists of a ground
state and two electronically coupled excited donor and acceptor
states.51 The excited states are linearly coupled to a reaction
mode (Figure 1), which in turn is weakly coupled to a harmonic
bath. In the present context, the general formula (5) is specialized
as follows: the electronic states and vibrational modes, which
are directly involved in the reaction, constitute the relevant
system and are described byHS. The bath degrees of freedom
(described byHB) are only indirectly involved via the system-
bath couplingHSB, which is assumed to be weaker than the
primary interactions contained in the system Hamiltonian.

We shall restrict ourselves to the consideration of a single-
vibrational-mode system Hamiltonian

∂σ(t)
∂t

) -iLσ(t) (6)

Sst(t0,ω0) ∼ Tr[W(ω0) e-iLt0 D(ωL)] (7)

D(ωL) ) ∫-∞

∞
dt′∫0

∞
dt1 EL(t′) EL(t′ - t1) ×

eiωLt1 eiHe
St e-iHe

St1 VegFg eiHg
St1 Vge e-iHe

St′ + HC (8)

W(ω0) ) ∫-∞

∞
dt ∫0

∞
dt3 Et(t + t3) ×

Et(t) e(iω0-γ)t3 eiHe
St Veg eiHg

St3 Vge e-iHe
St3 e-iHe

St + HC (9)

EL(t) ) ΓL
1/2 e-ΓL|t| (10)

Fi ≡ Zi
-1 e-Hi/kT (11)

Hg
S|n〉 ) En|n〉 He

S|R〉 ) ER|R〉 (12)

ωRn ) ER - En ωRâ ) ER - Eâ (13)

Sst(t0,ω0) ∼ ∑
R,â,R1,â1

WRâ(ω0) {e-iLt0}R1â1

Râ DR1â1
(ωL) (14)

DRâ(ωL) )

∑
n

VRnVnâFg(n){ 1

ΓL - i(ωL - ωRn)

1

ΓL - i(ωL - ωân)
+

1

2ΓL - iωRâ

1

ΓL - i(ωL - ωân)
+

1

2ΓL - iωRâ

1

ΓL - i(ωL - ωRn)} + CC (15)

WRâ(ω0) )

∑
n

VRnVnâ{ 1

Γ - i(ω0 - ωRn)

1

Γ + γ - i(ω0 - ωân)
+

1

2Γ + γ - iωRâ

1

Γ + γ - i(ω0 - ωân)
+

1

2Γ + γ + iωRâ

1

Γ - i(ω0 - ωRn)} + CC (16)

HS
g ) |g〉 H0 〈g| (17)

H0 ) Ω{b†b + 1/2} (18)

He
S ) ∑

i)1,2

|φi〉 (Hi + εi
0) 〈φi| + {|φ1〉 V12 〈φ2| + HC} (19)

Hi ) Ω{b†b + 1/2 -
∆i

21/2
(b† + b)} (20)
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Here|φ2〉 and|φ1〉 label the diabatic donor and acceptor excited
electronic states,εi

0 are the vertical electronic excitation energies,
the vertical displacements (0-0 transition energy) are given by
(see Figure 1):εi ) εi

0 - Ω∆i
2/2, andV12 is the electronic

coupling matrix element (V12 should not be confused with the
matrix elements of the transition dipole momentsVRn andVnâ

in eqs 15, 16). The vibrational Hamiltonians, which are written
in the second quantization representation, are taken to be
harmonic.Ω is the vibrational frequency of this reaction mode
(it is assumed to be the same for both electronic states) and∆i

are the horizontal displacements of the excited-state potentials
from the energy minimum of the electronic ground state. It is
assumed that the ET takes place between the two excited
electronic states, one of which (the donor state|φ2〉) is
optically bright, while the second (the acceptor state|φ1〉) is
optically dark, so that the transition-dipole operator isVeg ∼
|g〉 〈φ2| + HC.

A standard assumption is to model the bath by a collection
of harmonic oscillators:

We further introduce the simplest approximation for the system-
bath interaction, a bilinear system-bath coupling in the rotating-
wave approximation52,53

The system-bath coupling is assumed to be the same for both
electronic states. It is entirely described by the so-called bath
spectral functionJ(ω). The latter has been taken in the Ohmic
form with exponential cutoff,54 viz.

Here η is a dimensionless system-bath coupling strength and
ωc is a cutoff frequency.

As has been mentioned earlier, the key quantity describing
the relevant system dynamics is the RDM (6), which is defined
as the trace over all bath variables of the full density matrix. In
the present article, the RDMσ(t0) is calculated in the framework
of Redfield theory, as has been described in detail elsewhere.55

Assuming sufficiently weak system-bath coupling, the bath
degrees of freedom are traced out in the Born and Markov
approximations, yielding the Redfield equation of motion for
the RDM in the system eigenstate representation,56,57 so that
eq 6 is written explicitly as follows

HereRκλµν is the relaxation or Redfield tensor. The first term
on the right-hand side describes the isolated system evolution,
while the second one represents its interaction with the
dissipative environment. The Redfield tensor, which is respon-
sible for the system relaxation, can be expressed as

where

and 〈...〉B denotes the thermal average over the bath. For the
Hamiltonians defined above, the Redfield tensor components
can be expressed in closed form.26,55

Equations 24-28 (Redfield equations of motion) together
with eqs 14-16 (TFG SE spectrum) are utilized to calculate
TFG SE signals for the ET system. The basic scheme for the
calculations is the following: The first step is to evaluate the
system eigenstates (eq 12). One then calculates theD function
(15) which describes the optically prepared initial state of the
system

After that one performs a propagation over a time intervalt0
according to the Redfield equations (24-28) with the initial

Figure 1. Diabatic (solid) and adiabatic (dashed) potential-energy
surfaces for the normal (a) and inverted (b) regime.

HB ) ∑
q

ωq(aq
†aq + 1/2) (21)

HSB ) ∑
q

gq(b
†aq + baq

†) (22)

J(ω) ) ηω exp{-ω/ωc} (23)

∂σµν(t)

∂t
) -iωµνσµν(t) + ∑

κλ

Rµνκλσκλ(t) (24)

Rµνκλ ) Γ+
λνµκ + Γ-

λνµκ - δνλ∑RΓ+
µRRκ - δµκ∑RΓ-

λRRν

(25)

Γ+
λνµκ ) ∫0

∞
dt 〈〈λ|HSB(t)|ν〉 〈µ|HSB|κ〉〉B e-iωµκt (26)

Γ-
λνµκ ) ∫0

∞
dt 〈〈λ|HSB|ν〉 〈µ|HSB(t)|κ〉〉B e-iωλνt (27)

HSB(t) ) eiHBt HSB e-iHBt (28)

σRâ(0) ) DRâ(ωL) (29)
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condition (29), yielding the RDMσRâ(t0). For nontrivial systems,
this is the computationally most expensive part. In the present
article, a fourth-order Runge-Kutta scheme58 has been em-
ployed for the numerical time propagation. The final step is
the contraction of the RDMσ(t0) with theW function (16) which
describes the detection process. This yields the desired TFG
SE spectrum

It should be remarked that for electronically nonadiabatic
systems the use of the eigenstate representation is computa-
tionally feasible for system Hamiltonians containing several
vibrational modes (up to seven in favorable cases19), so that
the use of eqs 12 is not very restrictive. Note that this method
requires theD andW operators to be calculated only once.

4. TFG SE Spectra of ET Systems: Specific Examples
and Discussion

To reveal the connection between the electronic population
dynamics and spectroscopic measurements, we consider the
frequency-integrated signal

where

is the frequency-integratedW operator. Evidently, the integral
signal is equivalent to the TFG SE signal in the limit of poor
frequency resolution (γ f ∞).49 In terms of the system
eigenstates50

It is further useful to consider separately the limiting cases of
good (Γ f ∞) and poor (Γ f 0) temporal resolution. If the
gate pulses are short enough (Γ f ∞), thenW̃ ) |φ2〉〈φ2| and

The integral signal is thus nothing else than the time-dependent
populationP2(t0) of the diabatic donor state|φ2〉. The fact that
in the ideal limit of ultrashort pulses the integral fluorescence
signal is equivalent to the diabatic population of the optically
bright electronic state has been established earlier by Meyer
and Koeppel59 and for the integral pump-probe signal by
Domcke and Stock.60,61

If the gate pulses are longer than any relevant time scale of
the system dynamics (Γ f 0), then

so that

In the system-eigenstate representation, the difference between
these two limits becomes transparent. For poor temporal
resolution (Γ ) 0), the signal is simply the weighted sum of
populationsσRR (see eq 36), while the perfectly time-resolved
signal contains the contributions from both coherencesσRâ
(R * â) and populationsσRR (see eq 34). Thus, the comparison
of the signals for good and poor temporal resolution allows one
to reveal the importance of coherences in the RDM.

When there is no coupling between the excited electronic
states (and thus no ET), the integral signal is simply proportional
to the constant (time-independent) population of the bright state,
irrespective of the time resolution.60 The nonadiabatic coupling
is therefore responsible for the time dependence of the popula-
tion and the evolution of the integral optical signal. Alternatively,
non-Condon effects in adiabatic systems also result in a time
dependence of the integral fluorescence signal.4,60,62

To learn about the interrelation between the integral signal
and the population dynamics, we present below the results of
explicit calculations. The system-bath interaction is described
by the spectral function (23) withωc ) Ω. The bath is assumed
to be in equilibrium at zero temperature to emphasize quantum
tunneling effects. We begin with the consideration of the effect
of temporal resolution. To render the presentation more
transparent, we separate the influence of the gate-pulse duration
from that of the pump pulse, restricting ourselves initially to
the case of impulsive excitation. In other words, the system is
instantaneously excited from the ground electronic state to the
donor (|φ2〉) electronic state. The preparation is referred to as
stationary, if there is no shift between the equilibrium configura-
tions of the ground and excited electronic states, and as
nonstationary otherwise.

4.1. Electronic Coherence in ET. We start from the
consideration of an ET system in the so-called normal regime
(Figure 1a). The system parameters have been taken from:26

Ω ) 0.05 eV,∆1 ) 3.5,∆2 ) 0 (stationary preparation),ε0 )
0 eV,ε1 ) 1.455 eV,ε2 ) 1.5 eV (the minimum of the potential
surface for the donor state is higher than that for the acceptor
state), andV12 ) Ω (strong electronic coupling). The coupling
to the bath is assumed to be rather weak (η ) 0.1).

The donor-state population dynamics for this system is given
by curve 1 in Figure 2a. This particular system (stationary
preparation and strong electronic coupling) is a good example
for the observation of EC in the ET reaction. Since no horizontal
shift is assumed between the minima of the|g〉 and|φ2〉 energy
surfaces, the vibrational effects (in particular, VC) are of minor
importance. The large-amplitude quantum beatings in the
population dynamics reflect the presence of EC. Indeed,
sufficiently large values of electronic coupling can result in
coherent electronic motion (“coherent ET”) between the donor
and acceptor electronic states. These beatings are analogous to
the well-known Rabi oscillations in optical physics.

The fast oscillations in curve 1 of Figure 2a arise from the
peculiarities of the initial preparation. Indeed, the WP is put at
t0 ) 0 into the unperturbed (V12 ) 0) ground vibrational state
of |φ2〉. However, because of the strong electronic coupling,
this initial vibrational state deviates significantly from the
eigenstates of the distorted adiabatic potential.

Figure 2a shows the integral signals calculated for this system,
assuming four different time resolutions, varying from good
(Γ ) 2Ω) to poor (Γ ) Ω/100). The assumption that the pulses
are short compared with the time scale of system-bath relaxation
(cf. the derivation of eqs 7-9) is well fulfilled, except the last
case (Γ ) Ω/100). In this case, strictly speaking, this assumption
is not valid, and the theory may not be quantitatively accurate,

Sst(t0,ω0) ) ∑
R,â

WRâ(ω0) σRâ(t0) (30)

I(t0) ) ∫-∞

∞
dω0 Sst(t0,ω0) ) Tr{W̃σ(t0)} (31)

W̃ ) ∫-∞

∞
dω0 W(ω0) (32)

W̃Râ ∼ 〈R|φ2〉 〈φ2|â〉
4Γ2

4Γ2 + ωRâ
2

) ∑
n

VRnVnâ

4Γ2

4Γ2 + ωRâ
2

(33)

I(t0) ) ∑
R,â

σRâ(t0) 〈R|φ2〉 〈φ2|â〉 )

Tr[|φ2〉 〈φ2| σ(t0)] ) P2(t0) (34)

4Γ2

4Γ2+ω2
Râ

) δRâ (35)

I(t0) ) ∑
R

σRR(t0) 〈R|φ2〉
2 (36)
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but the results should reflect the qualitative effect in this limit
(poor time resolution). The calculations show that for good
temporal resolution (up toΓ ) 2Ω) the integral signal follows
the diabatic population of the donor state. In Figure 2a, the
corresponding kinetics are undistinguishable from that given
by curve 1: they reproduce all the features of the population
dynamics, even the fast oscillations of vibrational origin. The
equivalence of integral signal and population dynamics is a
direct consequence of the theoretical analysis discussed above.

With decreasingΓ, the integral signal becomes smoother, but,
as expected, the electronic beatings are seen in curves 2 and 3
in Figure 2a (Γ ) Ω/5 andΓ ) Ω/10, respectively). Finally,
when we take really poor time resolution (curve 4,Γ ) Ω/100),
which corresponds to a gate pulse which is much longer than
the time scale of EC, we loose the electronic beatings in the
signal. For such long gate pulses, the time resolution becomes
inadequate to resolve the quantum beats in the population
dynamics. It is noteworthy that the smoothing of integral signal
with decreasing temporal resolution looks like a time-averaging
process: all the curves in Figure 2a pass through the same
intersection points. For poor resolution (1/Γ larger than the time

scale of EC), the fast system dynamics cannot be resolved and
one measures only the time-averaged signal, describing the rate
process of the population decay from the donor to acceptor state.

Clearly, the temporal resolutionΓ ) Ω (when the gate pulse
is of the order of the vibrational period) is critical for the
observation of the fast-oscillating vibrational structure, origi-
nating from the peculiarities of the initial preparation. The
corresponding signal is given by the dotted line in Figure 2b,
which shows in detail the early-time part (first 500 fs) of the
population dynamics and fluorescence signals presented in
Figure 2a. WhenΓ ) Ω, the vibrational oscillations in the
integral signal disappear, but the signal still exhibits the same
electronic oscillations as in the case of high temporal resolution.
Although the value of the electronic coupling is equal to the
vibrational frequency in this example, the period of these
electronic beatings is much longer than 1/Ω. The explanation
of this seemingly puzzling fact is simple:V12 ) Ω does not
mean that the characteristic time scale of the EC is of the order
of 1/Ω. The frequency of the electronic quantum beats is rather
determined by the electronic coupling matrix element, renor-
malized by the Franck-Condon overlap integral of the relevant
vibrational wave functions of the diabatic potentials. One can
estimate this time scale from Figure 2 as∼400 fs. Taking into
account that the vibrational period corresponding toΩ ) 0.05
eV is Tvib ) 83 fs, one can expect that electronic oscillations in
the integral signal can be seen up to valuesΓ ∼ Ω/5. This
conclusion is confirmed by the results of our calculations (see
Figure 2a).

This example gives a clear confirmation of our qualitative
considerations on the integral signal (see discussion above). In
Figure 2a, the signal corresponding to good resolution (curve
1) shows contributions from both populations and coherences,
while in the case of poor time resolution, the coherences are no
longer present in the signal which simply reflects monotonic
population decay. All curves have the same long-time decay,
giving the ET rate which is independent of temporal resolution.
As expected, the difference between the highly and poorly time-
resolved signals is important on short time scales (when
coherences are not yet destroyed). For instance, with decreasing
time resolution the absolute value of the integral signal att )
0 is significantly less than 1.

The discussed model system is a good example for the
observation of EC in ET. We conclude that the very existence
of electronic beatings for the present ET system can be observed
with gate pulses as long as 1/Γ ) 10/Ω ≈ 830 fs. Therefore it
seems that the temporal resolution is not a critical parameter
for the observation of EC; the necessary temporal resolution
can be easily achieved with pulses available nowadays. Nev-
ertheless, to the knowledge of the authors, electronic population
oscillations of the type shown in Figure 2a have not yet been
observed in real systems. The quantum beats observed so far
in femtosecond time-resolved pump-probe and fluorescence
signals for numerous ET systems appear to be of vibrational
origin.3,34 An experiment which was especially designed to
detect EC in ET has failed.32 In real systems, extremely short
(of the order of several femtoseconds) dephasing times are the
most important obstacle for the observation of the EC. In the
ET model system discussed here, the dephasing time was long
enough to allow the observation of EC at a time scale of the
order of 1 ps.

There might be another possible reason for the failure of the
above-mentioned attempt to detect EC in ET. The amplitude
of the EC effect is extremely sensitive to the choice of system
parameters, especially the initial preparation and the electronic

Figure 2. (a) Influence of the temporal resolution on the integral SE
signal of a model ET system (normal regime, stationary preparation,
strong electronic coupling) exhibiting EC: 1,Γ > 2Ω (population
dynamics); 2,Γ ) Ω/5; 3, Γ ) Ω/10; 4,Γ ) Ω/100. (b) Same as in
Figure 2a, but for the first 500 fs. The additional dotted line corresponds
to Γ ) Ω.
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coupling strength. It is therefore not unlikely that for a particular
molecule and for a particular configuration of experiment, EC
effects are not present at all.

4.2. Vibrational Coherence in ET.Next we consider again
an ET system in the normal regime (Figure 1a), but two
important system parameters are taken different from the
previous case:V12 ) Ω/5(weak electronic coupling) and∆1 )
5.5, ∆2 ) 2.26 This choice corresponds to nonstationary
preparation, that is, there is a shift between the equilibrium
configurations of the ground and donor electronic states. Due
to the weak electronic coupling, the EC is strongly suppressed,
but a new effect, VC, shows up as a consequence of the
nonstationary preparation. The instantaneous excitation results
in the preparation of a WP in the excited electronic state which
subsequently performs coherent vibrational motion. As can be
seen from Figure 1a, the mean energy of the initial wave packet
lies above the energy of the crossing point of the diabatic
potentials, that is, the crossing point is accessible for the moving
wave packet.

The population dynamics for this system calculated via
Redfield theory is given by curve 1 in Figure 3a. It exhibits a

peculiar and easily interpretable behavior, reflecting the com-
bined effect of vibrational WP dynamics in the donor state and
ET, namely, a steplike decay of donor-state diabatic population
P2(t0). Obviously, due to the presence of electronic coupling, a
fraction of the WP is transferred to the acceptor state each time
the moving WP hits the crossing region (att0 ) 2πn/Ω, n ) 1,
2, ...). The characteristic stepwise structure thus reflects this
ultrafast ET process driven by coherent WP motion, which is
quenched after∼500 fs due to vibrational damping. After the
WP motion is relaxed, the donor-state population exhibits a
monotonic decay, analogous to the long-time decay in the case
of stationary preparation in Figure 2. Similar steplike population
behaviors at short times and bimodal decay curves have been
obtained by several authors21,63-65 and also observed experi-
mentally.4,35 These features appear to be generic for ultrafast
ET dynamics with nonstationary preparation for systems with
a single or few system vibrational modes.

Now we proceed to the discussion of the integral signals
calculated for this system with different time resolutions, ranging
from good (Γ ) 2Ω) to poorΓ ) Ω/50). Figure 3a shows the
overall behavior, while Figure 3b gives a detailed picture of
the short-time dynamics. The main point is the criterion for the
observation of the characteristic steps in the integral signal.
Qualitatively, the influence of the time resolution is very similar
to that established in the previous case (Figure 2). For good
temporal resolution (up toΓ ) 2Ω), the integral signal coincides
with the population dynamics (curve 1 in Figure 3a and solid
line in Figure 3b); the time resolutionΓ ) Ω (dotted line in
Figure 3b) is at the borderline for the observation of steps; for
slightly worse temporal resolution (dashed line in Figure 3b,
corresponding toΓ ) Ω/2) the steps are washed out in the
integral signal. If one further decreases the temporal resolution
(curves 2-4 in Figure 3a, corresponding to the temporal
resolutionΓ ) Ω/10, Γ ) Ω/20, andΓ ) Ω/50, respectively)
the gate pulse averages out all characteristic features of the
system dynamics, resulting in a smooth decay curve. The rate
of the long-time exponential decay is independent of the
temporal resolution. On the contrary, the short time (up to 500
fs) behavior of the signals depends significantly on the time
resolution, because the coherences are not yet destroyed. In
contrast to the EC, the time scale of the VC is determined by
the system vibrational period,Tvib ) 83 fs. Thus the time scale
of the VC is much shorter than that of the EC (∼400 fs) in our
system. Therefore the characteristic features of VC disappear
faster with decreasing time resolution than in the previous case.
For example, a time resolutionΓ ) Ω/10 is still enough to
observe the EC (Figure 2), while for the VC (Figure 3) this is
already beyond the limit of resolution.

4.3. TFG SE Spectra.Experimentally, a TFG SE spectrum
can be constructed from the data for a range of times between
the excitation pulse and the gate pulse, and a range of frequency
windows determined by the spectral filter. In this section we
present 3D TFG spectra calculated using eq 30 for the systems
considered in detail in a previous section. To primarily
concentrate on the dynamic effects, a perfect time (Γ ) 10Ω)
and frequency (γ ) Ω/20) resolution has been chosen for all
calculations.

The TFG SE spectrum for the ET system with EC (system
considered in section 4.1) is presented in Figure 4. The spectrum,
as a function of time, qualitatively reflects the electronic
population dynamics: one can clearly see the large-amplitude
electronic beatings mirroring coherent ET as well as the fast
oscillations due to peculiarities of the initial preparation. Cuts

Figure 3. (a) Influence of temporal resolution on the integral SE signal
of a model ET system (normal regime, nonstationary preparation, weak
electronic coupling) exhibiting VC: 1,Γ > 2Ω (population dynamics);
2, Γ ) Ω/10; 3,Γ ) Ω/20; 4,Γ ) Ω/50. (b) Same as in Figure 3a, but
for the first 130 fs: solid line,Γ > 2Ω; dotted line,Γ ) Ω; dashed
line, Γ ) Ω/2.
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of the spectrum at fixed frequencies, i.e., the transients which
are usually measured experimentally, in general, have very
different behavior. For example, the cut at the frequency close
to 0-0 transition reproduces the population dynamics almost
quantitatively, while the cuts at the wings of the spectrum give
a qualitatively different behavior (compare with refs 60 and 61).
Therefore, the problem of a theoretical reproduction of experi-
mental 3D TFG SE spectra is quite demanding, because one
must achieve a coincidence for all particular frequency cuts. In
turn, this imposes restrictions on the choice of system param-
eters. Ideally, this would help one to fit the system parameters
in a unique way.

As a function of frequency, on the other hand, the TFG
spectrum att0 ) 0 represents the SE of the initially prepared
nonequilibrium excited state. Later on, at every time moment
t0, it represents the time evolution of the fluorescence spectrum.
The area under the instantaneous spectraS(ω0,t0) decreases with
time, reflecting the decay of the population in the donor
electronic state. In the limitt0 f ∞, the TFG SE spectrum is
nothing else than the relaxed fluorescence spectrum.49 For the
ET system under consideration, the donor state population tends
toward zero fort0f ∞; therefore, there is no relaxed fluores-
cence.

The TFG SE spectrum for the ET model with VC (system
considered in section 4.2) is depicted in Figure 5a. Again, the
time evolution of the signal monitors the ET dynamics: we
can see the steps occurring in the donor-state population. In
addition, the signal, as a function of frequency, maps directly
the periodic vibrational WP motion in the excited state. To show
this explicitly, the TFG SE signal is displayed in Figure 5b
during the first two periods. The time evolution of the spectrum
within each step reminds us of that of the Brownian oscilla-
tor.45,49 The WP exhibits quasiperiodic behavior, moving
between classical turning points, where the local maxima of
the peak shift occur. If the temporal and spectral resolutions
are good enough, the intensity and the shape of the spectrum
do not change within each step (compare with Figure 1c in ref
49, where the TFG spectrum is given for a Brownian oscillator).
Every time the WP comes to the crossing point of the two
diabatic potentials, part of it leaks to the acceptor state,
producing a step in the electronic population. Thus, the crossing
point can indeed be regarded as a “sink”, as it is assumed in
Zusman-type models of ET.66 This picture does not apply, on
the other hand, to the description of the dynamics of the ET
system with EC (Figures 2 and 4), because the population

dynamics in that case is not monotonic, but quasiperiodic, and
cannot be described by an effective “sink”.

Summarizing, both electronic and vibrational coherences
contribute to the population dynamics for ultrafast ET systems.
If short enough pulses are employed, both types of coherences
manifest themselves in the measured TFG SE spectra. Moreover,
TFG SE spectra provide us with more information on the system
dynamics than frequency-averaged time-resolved signals or the
conventional stationary fluorescence spectrum. In fact, the TFG
SE signalS(ω0,t0) gives the actual spectral shape (e.g., Gaussian,
Lorentzian, or more complicated) and shows directly the
evolution of the fluorescence spectrum with time. It is thus very
useful for a detailed understanding of the system dynamics.

4.4. Finite Pump Duration.Finally, we study briefly another
aspect of ultrafast time-resolved spectroscopy: the effect of the
system preparation by a pump pulse of finite duration. Evidently,
the amount of vibrational energy and coherence initially
deposited into the system is determined by the temporal and
spectral properties of the excitation pulse. To separate the effect
of the pump-pulse duration from that of the time-gate duration
considered in section 4.1, a good temporal resolution of the gate
pulse (Γ ) 2Ω) is assumed in the following.

Figure 4. TFG SE spectrum of the ET system exhibiting EC in the
case of good time and frequency resolution.

Figure 5. (a) TFG SE spectrum of the ET system exhibiting VC in
the case of good time and frequency resolution. (b) Same as in Figure
5a, but for the first two vibrational periods (∼200 fs).
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To analyze different scenarios of ultrafast ET within the
present model, we consider a system in the so-called inverted
regime. The potential-energy surfaces are given in Figure 1b,
and the system parameters are taken as follows:26 Ω ) 0.064
eV, ∆1 ) -0.8281,∆2 ) -2, V12 ) 0.1 eV, andε0 ) 0 eV,
ε1 ) 2.8741 eV,ε2 ) 3 eV, η ) 0.4219.

The integral signals calculated for this ET system prepared
by pump pulses of different duration are plotted in Figure 6.
The pump pulse is described by eq 10, so that the time-integrated
intensity is kept fixed when the pulse duration is varied. The
signals, on the other hand, are normalized to unity att0 ) 0,
i.e., I(0) ) 1. The problem of normalization deserves further
clarification. If one considers unnormalized signals calculated
according to eq 31, one finds that the shorter the pump pulse,
the larger is the absolute value of the signal. (This fact was
well-established earlier for the pump-probe spectroscopy.19)
Indeed, short pump pulses have a broad bandwidth and can
excite coherently many vibrational levels, so that ET occurs
from a number of initially excited levels. A long pump pulse,
on the other hand, excites only a few vibrational levels, which
results in a significant decrease of the absolute value of the
integral signal. This must be contrasted to the time-resolution
effect of the gate (Figure 2). In that case, the smaller initial
values ofI(t0) are the result of the detection procedure: long
gate pulses average over the population dynamics.

Keeping this in mind, we are in a position to analyze the
dependence of the integral signal on the duration of the pump
pulse (see Figure 6). The effect of pump-pulse duration
qualitatively looks very similar to the effect of time resolution
of the gate: the steplike structure reflecting WP motion can be
well detected with short pump pulses (curves 1 and 2, which
correspond toΓL ) 10Ω andΓL ) 3Ω, respectively). The pump-
pulse duration of the order of the vibrational period (curve 3,
ΓL ) Ω) is the critical one: the characteristic effects of coherent
vibrational motion are nearly wiped out in the integral signal.
For longer pump pulses (curve 4,ΓL ) Ω/10), the system is
prepared in such a way that no features of vibrational coherence
can be detected, although the time resolution of the gate is
sufficient to detect them.

To monitor the microscopic features of the ET dynamics in
a TFG SE experiment, one must thus employ sufficiently short
pump pulses to excite coherently a significant part of the
vibrational levels. What is less intuitive, the structures of the

integral signal are as sensitive to the pump-pulse duration as to
the gate-pulse duration. To detect the mode-specific steplike
structure in ultrafast spectroscopic signals of ET process, the
pump-pulse duration as well as the gate-pulse duration must be
shorter than the vibrational period.

5. Conclusions

We have presented the application of the theory of TFG SE
signals to nontrivial examples: ultrafast ET processes. The TFG
as well as frequency-integrated SE signals have been calculated
for various durations of the pump and gate pulse. Our main
findings can be summarized as follows.

The integral signal obtained with sufficiently short gate pulses
(i.e., good temporal resolution) reflects most directly the donor-
state diabatic population. If the temporal resolution decreases,
system-specific features are wiped out, and the signal simply
reflects monotonic decay of the population of the donor state.
In the system eigenstate representation, the difference between
these two limits becomes transparent. For poor time resolution,
the signal is simply the weighted sum of populationsσRR (eq
36), while the perfectly resolved signal contains the contributions
from both coherencesσRâ (R * â) and populationsσRR (eq 34).
Thus the comparison of the signals obtained with good and poor
temporal resolution allows one to estimate the importance of
coherence effects in the system dynamics. The difference
between the two limits is pronounced on short time scales (when
coherences are not yet destroyed). The rate of the long-time
decay (ET rate) is independent of the temporal resolution.

The effect of optical preparation by pump pulses of finite
duration is qualitatively similar to that of temporal resolution
of the gate pulse. To monitor the mode-specific features of the
ET dynamics in a TFG SE experiment, one must employ
sufficiently short pump pulses to excite coherently a significant
part of vibrational levels. To detect the characteristic steplike
structure in ultrafast spectroscopic signals, the pump-pulse
duration as well as the gate-pulse duration must be shorter than
the vibrational period.

To elucidate the effect of various coherences on SE signals,
we have performed simulations for ET models in which either
EC or VC effects are dominant. For the observation of electronic
quantum beats, the time resolution of the gate must be of the
order of or shorter than the electronic beating period. Provided
the time-gate duration is of the order of a vibrational period or
shorter, VCs were shown to manifest themselves through the
characteristic steplike structures in the electronic population. It
should be noted that the prediction of such peculiar steplike
structures is not limited to the case of weak system-bath
coupling, which is described by Redfield theory. They manifest
themselves in the population dynamics also in calculations
carried out beyond this limit.65,67,68

Both types of coherences can show up in measured TFG SE
spectra. The TFG SE spectrumS(ω0, t0) as a function of time
qualitatively reflects the electronic population dynamics: either
electronic beatings reflecting EC or the steps occurring in the
donor-state population due to VC. In addition, the frequency-
dependent TFG spectrum att0 ) 0 represents the SE of the
initially prepared nonequilibrium excited state. Later on, at every
time momentt0 it gives the development of this fluorescence
spectrum. Most importantly, the time- and frequency-resolved
signal maps directly the periodic vibrational WP motion in the
excited state. TFG SE spectra provide us therefore with more
information on the system dynamics than frequency-averaged
time-resolved signals or the conventional stationary fluorescence
spectrum.

Figure 6. Influence of pump-pulse duration on the integral SE signal
of a ET system in the inverted regime: 1,ΓL ) 10Ω; 2, ΓL ) 3Ω;
3, ΓL ) Ω; 4 (dotted line),ΓL ) Ω/10.
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To summarize, the influence of the measuring devices (the
pump pulse for preparation and the gate pulse for detection) is
significant and must be accurately taken into account. The
presented results illustrate the relation between the “pure”
(intrinsic) dynamics of ET systems (e.g., the time-dependent
electronic population dynamics) and “real” experimental ob-
servables. This aspect is new in comparison with the investiga-
tions of Jean.36 We hope that the methods developed in the
present work may prove useful for the interpretation of TFG
SE experiments on ultrafast ET systems exhibiting coherent
responses. The present approach can be directly applied to the
description of experiments which detect ultrafast ET processes
via time-gated fluorescence for systems which are described
by three-state ET models (i.e., with a separate electronic ground
state). In this context, the experiments of Yoshihara and co-
workers on the electron donor-acceptor complex TCNE-HMB
and related systems are of particular interest.4 Work in this
direction is in progress.
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